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Abstract. Semantic tooth segmentation in the Cone-Beam Computed
Tomography(CBCT) images is essential is essential for dental diagnosis.
The success of deep learning provides a solution to realizing automatic
segmentation, while requiring a large-scale labeled CBCT dataset - a
condition that is hard to meet because of the challenging nature of man-
ually annotating complex CBCT images. In this paper, we propose a
novel self-supervised framework to boost the accuracy of CBCT tooth
semantic segmentation. Our method first employs a self-supervised pre-
training network, which is regulated by a modified contrastive loss that
is computed based on the spatial distances between local regions within
each CBCT image, to pre-train a Swin Transformer backbone with a
large-scale unlabeled CBCT dataset. Next, we finetune the network with
an UPerNet segmentation head on a small expertly annotated CBCT
dataset. Compared to fully supervised methods trained by the same
amount of annotated samples, our method achieves a superior perfor-
mance of 91.33% tooth IoU. Moreover, our method can obtain better
performance with only 25% of annotated samples of supervised coun-
terparts. Our work presents a possible solution to reducing the human
efforts in CBCT image segmentation.

Keywords: Self-supervised Learning · Semantic segmentation · Cone-
Beam Computed Tomography · Digital dentistry.

1 Introduction

Reconstructing 3D dental models is important for many dental applications, such
as orthodontics and implant. There are mainly two types of 3D dental models:
Intraoral scanning and Cone-Beam Computed Tomography (CBCT) [1]. Intrao-
ral scans can provide accurate reflection of the tooth crowns with a very high
resolution, while CBCT, though with a lower resolution, can provide comprehen-
sive 3D information for most oral tissues, including tooth crowns, tooth roots,
alveolar bone, etc. In modern digital dentistry, it is critical to obtain complete
anatomical information for more precise and clinically applicable treatment plan-
ning, e.g., avoiding alveolar bone fenestration in orthodontics.

Many methods have been proposed for tooth segmentation in the past decades.
Traditional solutions are mainly based on thresholding [5, 6] or level-set meth-
ods [2–4,7], which usually require manual initialization or prior knowledge, e.g.,
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initial seeds or starting slices [7]. Recently, due to the success for segmentation
tasks, several deep learning methods have been proposed for tooth instance seg-
mentation on CBCT images [8, 11–14]. ToothNet [9] uses a two-stage network
to achieve automatic tooth segmentation from CBCT images. Ezhov et al. [8]
propose a coarse-to-fine framework to segment individual teeth in 3D CBCT
images, where the model is trained with a large coarsely labeled dataset and
subsequently fine-tuned with a smaller downscaled precisely labeled dataset.
Wu et al. [10] propose a two-level hierarchical deep neural network which first
gets the localization information and then realizes accurate boundary segmenta-
tion with the DenseASPP-UNet. All of these works are supervised methods that
require precisely labeled samples. However, manually labeling 3D CBCT scans
is very labor-intensive, e.g., it takes about 30 to 60 minutes to annotate a single
CBCT slice for an experienced dentist, while a CBCT scan usually consists of
hundreds of slices. Such a conflict between the demand for annotated samples
and the under-supply expertise and human labor motivates us to develop algo-
rithms that can segment tooth with only few annotated slices.

Self-supervised learning (SSL) has shown superior performance in many vi-
sion tasks by learning expressive representations on unlabeled data via pretext
tasks [15–17, 28, 29]. In many SSL frameworks, it is not uncommon to perform
pre-training via a contrastive learning strategy that usually minimizes the dis-
tance between positive pairs while pushing away negative samples, where posi-
tive pairs are usually different augmentations of the input image and negative
samples are sampled in the dataset otherwise. Recently, self-supervised learning
has demonstrated its effectiveness on medical images classification or segmen-
tation downstream tasks [18–22]. However, to the best of our knowledge, there
exists no prior work of SSL for tooth segmentation on CBCT images due to
several domain-specific challenges. While most existing SSL methods, such as
BYOL [15], are pre-trained with image-level contrastive loss, which might be sub-
optimal to generate powerful pixel-level representations for downstream dense
semantic segmentation tasks. Besides, many images within a CBCT dataset bear
a strong coarse-level resemblance. However, the challenges for CBCT image seg-
mentation remain for complicated anatomical structures, such as indistinguish-
able boundaries between tooth contacts of upper and lower jaws, ambiguous
pixels among tooth, alveoli and alveolar bones, indicating that novel dense rep-
resentation learning strategies are needed rather than only selecting images-level
negative samples for coarse contrastive learning.

In this paper, we propose a novel SSL pre-training method that employs
dense contrastive learning on large-scale unlabeled CBCT images in order to
boost the performance of the downstream semantic segmentation task. We built
a CBCT image dataset that consists of 123,904 unlabeled images and 2,903
annotated images from 400 patients. To better align the pre-training network
with the downstream segmentation tasks, we inherit the siamese architectures
that are designated to learn image-level representations, but further integrate a
dense contrastive learning branch to calibrate pixel features based on the spatial
distance between the local regions within every image view. With Swin Trans-
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former [24] as the backbone, our tooth segmentation network is first pre-trained
with the SSL framework and dense contrastive loss, and subsequently finetuned
with an UPerNet [32] segmentation head on a small labeled CBCT dataset.
Compared to fully supervised networks trained by the same amount of anno-
tated samples, our method achieves state-of-the-art performance of 91.33% of
IoU on a hold-out set of 903 images from 43 patients. Moreover, our method can
achieve better performance than the supervised counterparts with only 25% of
annotated samples. Our work demonstrates that it is highly possible to achieve
accurate CBCT segmentation with a limited number of human laborers.

2 Method

2.1 Overview

Given a dataset B = {xi}Ni=1, where xi denotes a 2D Cone Beam CT image
with a resolution of 512×512 or 640×640, we aim to develop a model that au-
tomatically annotates each pixel in the image with two categories, i.e., tooth
or background. The core of our method is a two-stage network. The first stage
involves pre-training a Swin Transformer backbone by feeding two augmented
views of each CBCT image into the encoder network for representation learn-
ing. The network is trained with a novel dense contrastive loss function in a
self-supervised manner. The second stage finetunes the pre-trained backbone
with a subsequent UPerNet segmentation network supervised by a small-scale
annotated CBCT dataset.

2.2 Self-supervised Pretraining

Image Augmentation The overall self-supervised pre-training framework is
illustrated in Fig. 1. We adopt the general siamese network architectures which
take two different augmented views of the same input images for representation
learning. As for the augmentation strategies, we first randomly select a patch of
input images and then resize them to a resolution of 224 × 224. Subsequently, a
random horizontal flip is applied, followed by random crop and resize, color jitter-
ing, grayscale conversion, as well as Gaussian blur. Finally, optional solarization
is applied. Noted that during the random crop-resize stage, the coordinates of
the left bottom and the top right pixel of the cropped view will be recorded,
so that the pixels in the output feature map can be easily mapped back to the
original image for representation learning.

Segmentation backbone Swin Transformer is a general-purpose backbone
for computer vision that achieved state-of-the-art performance on various vision
tasks [27]. It hierarchically computes the representation with shifted windows
while preserving great efficiency [24]. In this work, we adopt the tiny version of
Swin Transformer (Swin-T) as our default backbone. Specifically, given an image
xi and its augmented view v, the backbone f encodes v into a feature vector
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yi = f(v) ∈ R768 via a 4-stage network, where each stage consists of a patch
merging module and different numbers of Swin Transformer blocks(2/2/6/2,
respectively). The hierarchical architecture in Swin Transformer can learn both
local and global representations. The local features help to identify the boundary
between the background and the tooth classes, while the global features provide
richer context information for robust classification. Though we also demonstrate
the effectiveness of our framework with ResNet backbone [23], we experimentally
find Swin Transformer to be the best option. More details are provided in [24].

Fig. 1: Architecture of the dense contrastive learning.

Self-supervised learning framework The main architecture of our pre-
training framework is illustrated in Fig.1. It inherits the general asymmetric
siamese network architectures like BYOL, with modifications to adapt to dense
contrastive learning that is conducted among local regions within each CBCT
image. The pre-training pipeline consists of an online network fθ and a target
network fζ , which share the same architecture, except that they are defined by
different sets of weights: θ and ζ, and the online network has an extra predic-
tor qθ. The target network is trained with the regression targets provided by
the online network. For each training step, with target decay rate τ , the target
parameters ζ are updated by the slow-moving average of online parameters θ:

ζ ← τζ + (1− τ)θ (1)

Given a single CBCT image xi, we first generate two augmented views: v and v′

which are respectively fed into the online network and the target network. For the
target network, v′ will go through the Swin Transformer backbone fζ to obtain a
feature map y′ = fζ(v

′) ∈ R768. Subsequently, the the dense projection network
gζ will upsample y’ into a dense dense feature map z′ = gζ(y

′) ∈ R768×7×7.
Similarly, the view v in the online network will also go through the backbone
network fθ and the projection network gθ, but has an extra MLP predictor qθ
to output a feature map z = qθ(gθ(y)) ∈ R768×7×7.

A critical part in our framework is the projection network. It consists of two
1× 1 convolutional layers with a RELU layer and a batch normalization layer in
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between. After the feature map y and y′ are obtained from the Swin backbone,
they are upsampled by a factor of 7 to be transformed into a dense manner. The
projection network gθ and gζ will then respectively produce two nonlinear pro-
jections of the feature maps: gθ(y), gζ(y

′) ∈ R768×7×7, with spatial resolution of
7 × 7, where a local contrastive learning pretext task can be constructed. Com-
pared to most existing contrastive learning frameworks where the contrastive
loss is computed at image level, the projection head network in this paper is
modified to produce a dense projection, and thus enables the contrastive loss to
be calculated based on the local regions within the image views.

Dense Contrastive Learning Given the dense feature map z and z′ ∈ R768×7×7,
we define the negative and positive pairs based on the spatial distance of local
regions in the feature maps. Both z and z′ have 49 local feature regions. As
we record the coordinates of corner pixels of the cropped views in the image
augmentation period, we can map the feature maps back to the coordinates in
the original CBCT image and calculate the distance between each feature point
in the two views:

dist(i, j) =

√
(Xi −Xj)

2
+ (Yi − Yj)

2
(2)

where i, j stand for feature regions in z, z′ respectively, andXi,Xj , Yi and Yj are
the corresponding positions of the i- and j-th feature regions in the 2D Cartesian
coordinate. Here we set a distance threshold µ = 0.8 to define the positive and
the negative pairs of the pixels as in [26]. The pair (i, j) is defined to be positive
if dist(i, j) < µ, and negative if dist(i, j) ≥ µ. The dense contrastive loss of a
single feature point in the feature map is defined similar to the InfoNCE loss [25]:

Li = −
1

D
log(

∑
ecos(hi,h

+
j )/λ∑

ecos(hi,h
+
j )/λ +

∑
ecos(hi,h

−
j )/λ

) (3)

where D is the diagonal length of the feature map; hi is the feature vector of
feature point i; h+

j and h−
j are the feature vectors of j that is denoted as the

positive or negative pair of i; λ is a temperature hyper-parameter that is set to
0.3 by default. The dense contrastive loss of a single view is the averaged loss
of all the 49 feature regions in the view, and the final loss is averaged across
all the views in the batch. Optimizing over the dense contrastive loss would
maximize the dissimilarity of the feature vectors generated by spatially distant
pixels, while encouraging the spatially close pixels to output similar features,
leading to a good initialization of pixel-wise representations in CBCT images for
the subsequent tooth semantic segmentation.

2.3 Finetune

The pre-trained backbone is finetuned for the downstream tooth semantic seg-
mentation task. A Unified Perceptual Parsing Network (UPerNet) [32] is cas-
caded to the network and trained in a supervised manner with a tiny-scaled
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annotated CBCT dataset. The image xi and the corresponding annotated mask
are identically augmented before they are fed to the network. The UPerNet
segmentation head is trained to capture hierarchical image information from the
feature map encoded by the backbone, and to predict texture labels for semantic
segmentation, with the supervision from the annotated samples.

3 Experiment

3.1 Experimental Setup

The dataset for SSL pre-training consists of 123,904 unlabeled CBCT images
from 400 patients, with a resolution of 512×512 or 640×640. The dataset for
finetuning consists of 2,903 CBCT images with annotations by experienced den-
tists, split into a training set with 2,000 images from 102 patients and a test set
with 903 images from 43 patients. In the pre-training period, we use Swin-T as
the backbone, trained by the AdamW optimizer with learning rate η1 = 0.001,
cosine decay rate=0.05, and batch size b = 64 for 300 epochs. We use the AdamW
optimizer with the learning rate η2 = 6e − 05 and a polynomial decay rate of
0.001 during finetuning. The network in the finetuning stage is trained for 160
epochs with batch size b = 2. We comprehensively evaluate the performance of
our method with various metrics, including Intersection-over-Union(IoU), Dice
Similarity Coefficient, precision, and recall over the predicted tooth masks. Given
the predicted tooth masks P and the label T , the IoU and Dice are computed

by P∩T
P∪T and 2|P∩T |

|P |+|T | =
2×precision×recall
precision+recall ,respectively.

3.2 CBCT semantic segmentation results

Table 1: Segmentation performance of our method and baselines.

Method IoU Dice Recall Precision

FCN 88.87 94.11 98.08 90.44
Deeplabv3 86.87 92.98 90.9 95.15
Swin 90.29 94.9 97.85 92.12

BYOL 90.78 95.17 98.45 92.10

Ours(Resnet-101) 91.01 95.29 96.65 93.98
Ours(Swin) 91.33 95.47 98.33 92.77

We evaluate the performance of our method (with Swin-T and Resnet-101
as the backbones) and compare with several supervised baselines, i.e., Fully
Convolutional Networks(FCN) [30], Deeplabv3 [31], Swin Transformer, as well
as the image-level SSL method BYOL, with results reported in Table.1. Note that
BYOL uses Swin-T as the backbone, while FCN and Deeplabv3 use ResNet-101
as the backbone. While both BYOL and our method significantly outperform all
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supervised baselines, our method further boosts the performance over BYOL,
achieving an IoU of 91.33%. This demonstrates that our method can achieve non-
trivial improvement compared to its supervised and self-supervised counterparts.
Furthermore, our method is also effective over different backbones, with larger
performance gain for the less powerful backbone ResNet-101.

We further evaluate the performance of our method when using different
amount of unlabeled data in the pre-training period. Unless otherwise indicated,
we use Swin-T as the backbone. Our method can obtain 91.00% of IoU and
95.29% of Dice even with only 1% unlabeled data, while increasing the amount
of unlabeled data during pretraining can lead to constant performance improve-
ment, which further demonstrates the effectiveness of our method.

Table 2: Performance with different ratios of unlabeled data during pre-training.

Unlabeled Data Ratio IoU Dice Recall Precision

1% 91.00 95.29 98.12 92.62
50% 91.15 95.37 98.26 92.65
100% 91.33 95.47 98.33 92.77

Table 3: Performance with different ratios of labeled data.

Data Ratio Training Strategy IoU Dice Recall Precision

1%
From scratch 40.90 58.06 47.04 75.81

Ours 59.94 74.95 68.02 83.45

5%
From scratch 82.53 90.43 96.28 85.24

Ours 85.82 92.37 96.93 88.22

10%
From scratch 86.63 92.84 98.13 88.09

Ours 89.18 94.28 97.37 91.38

25%
From scratch 87.81 93.51 98.67 88.86

Ours 91.06 95.32 97.31 93.40

50%
From scratch 88.16 93.71 98.81 89.11

Ours 91.27 95.44 98.00 93.01

100%
From scratch 90.29 94.90 97.85 92.12

Ours 91.33 95.47 98.33 92.77

We also carry out multiple experiments to evaluate the effect with different
amounts of labeled data during finetuning, with results reported in Table 3. We
compare our method with the network that employs the same Swin-UPerNet
architecture but trained from scratch with fully supervised settings. Our method
can consistently outperform its supervised counterparts, especially for settings
with limited annotated samples. When using only 25% of the annotated CBCT
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images, our method achieves competing or even superior performance compared
to its counterpart that is trained with the entire labeled dataset.

3.3 Ablation Study and Visualization

The ablation study here focuses on the image augmentation strategies in pre-
training. As shown in Table.4, Random Crop Resize brings about the most
prominent improvement in performance. Canceling both random crop Resize
and flip brings about a significantly inferior performance, indicating the impor-
tance of these two augmentation strategies. The visualization of 3 cases is shown
in Fig.2, where our method commits much fewer mistakes for false positive and
false negative predictions, see more visualizations in the Appendix.

Table 4: The result on CBCT dataset with different augmentation.

Random Crop Resize Flip Color Jittering IoU Dice Recall Precision

✓ ✓ ✓ 91.33 95.47 98.33 92.77
✓ ✓ 90.69 95.12 98.69 91.79

✓ ✓ 88.01 93.32 97.40 89.57
✓ 87.23 93.83 93.76 93.90

      

      

      
    false negative false positive 

Input GT DeeplabV3 Ours(Resnet-101) Swin Ours(Swin) 
 

Fig. 2: Visualization of the segmentation result of different methods. The back-
bone of Deeplabv3 is Resnet101. More results are presented in Appendix.

4 Conclusion

In this paper, we propose a method that improves the performance of semantic
segmentation for CBCT images by the means of a SSL pre-training strategy.
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Compared to fully supervised networks trained by the same amount of anno-
tated samples, our method achieves a superior performance of 91.33% tooth IoU.
Moreover, at low annotated dataset settings, our method can obtain better per-
formance with only 25% of annotated samples of supervised counterparts. The
extensive experiments convincingly illustrate the effectiveness of the proposed
Self-supervised pre-training strategy for reducing the necessity of manually an-
notated data in CBCT image segmentation.
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